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STO-3G orbital energies for the four highest occupied MO's of 
10 (Figure 2) are within 6.4 eV, whereas the energy gap between 
the HOMO and the three LUMO's (Figure 3) is 10.3-13.0 eV. 
For carbonium ions, the energy of the empty p orbital is close to 
that of occupied orbitals so homoaromaticity is permitted. It might 
be questioned whether minimal basis set calculations underestimate 
mixings between occupied and virtual orbitals. Actually, they tend 
to overestimate such charge-transfer interactions.28 

At this point, it may be asked what is controlling the relative 
acidities of 1-5? One must be cautious in attempting to explain 
differences of only a few kilocalories/mole in MO terms. With 
this in mind some proposals may be considered. The most obvious 
possibility is inductive effects. With increasing unsaturation the 
<s frameworks of the ions become more electronegative and better 
able to accommodate the negative charge. The effect is manifested 
in a general lowering of MO energies for the more unsaturated 
species. For example, the energy of the %2 HOMO decreases by 
0.15 eV in going from 8 to 10 according to the STO-3G results. 
It may also be noted that the MO coefficients show that xi mixes 
slightly with the UQC and <rcc* bond orbitals for the C1C7, C1C8, 
C5C6, and C5C9 bonds. This is indicated by the small contri
butions to the xi MO at C6-C9 in Figure 2. As the bridges 
become unsaturated, the acc and <rcc* orbitals are lowered in 
energy which makes the mixings with %2 less energetically un
favorable. 

Finally, the preference for C2v symmetry in 10 is easily un
derstood from the orbital analyses. Tilting the allylic fragment 
toward an ethylenic bridge increases the four-electron repulsion 
between ir. and Xi much faster than it increases stabilizing in-

(28) Umeyama, H.; Morokuma, K. / . Am. Chem. Soc. 1977, 99, 1316. 

teractions between occupied and unoccupied orbitals. This effect 
has been corroborated by both MINDO/3 and STO-3G calcu
lations. 

Conclusion 
An important finding in the present study is that reasonable 

relative acidities for alkenes can be obtained from minimal basis 
set ab initio calculations, particularly for structurally similar 
molecules. Furthermore, in view of the present results and other 
studies,8,14'29'30 it is apparent that stabilization from homo
aromaticity and bicycloaromaticity is not possible in neutral or 
anionic hydrocarbons. The molecules' occupied and unoccupied 
orbitals are well separated energetically. Consequently, their 
interaction cannot be realized without forcing geometrical dis
tortions that yield too much loss of bonding or increases in 
four-electron repulsive interactions. Thus, homoaromaticity is 
found only for a small class of carbonium ions in which stabili
zation occurs by mixing the empty p orbital with properly oriented, 
high-lying, occupied x or a orbitals. Bicycloaromaticity, which 
is an enhanced form of homoaromaticity resulting from the 
presence of additional unsaturated bridges, is likely only relevant 
for the 7-norbornadienyl cation. Invocation of these effects outside 
of the restricted contexts described here should be viewed with 
great skepticism. 
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Abstract: The electronic structure of the bicyclo[3.2.1]octa-3,6-dien-2-yl anion (6), considered to be the prototype bishomoaromatic 
anion, was analyzed by semiempirical (MNDO) and ab initio (STO-3G) MO calculations. No evidence for homoaromatic 
stabilization (i.e., cyclic delocalization) was found. C-2-C-7 distances and Mulliken overlap populations between these carbons 
are almost identical in the 6ir anion 6 and the corresponding 4ir cation 7. The calculated stabilization energy of anions 21 
and 24 is similar to that of the alleged homoaromatic species 6 even though the orientation of the additional double bonds 
in 21 and 24 does not permit homoconjugative interaction with the allyl HOMO (eq 1, 3, 5). The experimentally observed 
stabilizing effect of the C-6-C-7 double bond in 6 is due to an inductive effect. In general, homoaromatic stabilization is 
not expected to be an important phenomenon in anions. 

Applequist and Roberts recognized the unusual stability of the 
cyclobutenylium ion (I).1 The geometry of the small ring fa

cilitates substantial 1,3-ir-bonding; an ion (1), which resembles 
the aromatic cyclopropenyl cation electronically, was suggested 
to result.1 Winstein generalized this idea: the aromatic stabi-

(1) Applequist, D. E.; Roberts, J. D. J. Am. Chem. Soc. 1956, 78, 4012. 
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lization of conjugated systems with (An + 2)ir-electrons may not 
be destroyed completely by the insertion of one or more intervening 
groups.2 This concept, "homoaromaticity", won rapid accept
ance.3,4 Cations I5 and 26 (monohomoaromatic), 37 (bishomo-

(2) Winstein, S. / . Am. Chem. Soc. 1959, 81, 6524. 
(3) For reviews see: (a) Winstein, S. Q. Rev. Chem. Soc. 1969, 23, 141; 

Spec. Publ.—Chem. Soc. 1967, No. 21, 5; (b) Carbonium Ions 1972, 3, 
Chapter 22. (c) Paquette, L. A. Angev/. Chem., Int. Ed. Engl. 1978, 77, 106. 
(d) Warner, P. M. Top. Nonbenzoid Aromatic Chem. 1976, 2. 

(4) For theoretical treatments, see: (a) Goldstein, M. J. J. Am. Chem. Soc. 
1967, 89, 6357. (b) Hehre, W. J. Ibid. 1972, 94, 8908; 1973, 95, 5807; 1974, 
96, 5207. (c) Haddon, R. C. Ibid. 1975, 97, 3608. (d) Jorgensen, W. L. Ibid. 
1976, 98, 6784. (e) Haddon, R. C. J. Org. Chem. 1979, 44, 3608. 
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aromatic), and 48 (trishomoaromatic) are well-established exam
ples. 

Chemists were stimulated to seek further manifestations of this 
phenomenon; it is common to encounter experimental results 
interpreted in such terms.3 The high water mark was reached 
with the elegant paper of Goldstein and Hoffmann,9 who analyzed 
four different topologies for w interactions: pericyclic, spirocyclic, 
laticyclic, and longicyclic. This treatment included homo
aromaticity and homoantiaromaticity as special cases within the 
pericyclic topology. The authors recognized that stabilizing in
teractions should be more important with charged species in which 
the HOMO-LUMO energy differences of the interacting frag
ments are smaller than in neutral alternatives. 

More recently, an ebb is apparent: an increasing number of 
experimental and theoretical investigations indicate homoconju-
gative stabilization to be an overrated phenomenon.10 In par
ticular, the remarkable conclusion of Houk, Paquette, et al.10b that 
"homoconjugative interactions between neutral closed-shell 
systems are destabilizing" is opposite to previous deductions about 
homoaromaticity. Experimental support for their thesis comes 
from heats of hydrogenation, photoelectron spectra, and X-ray 
crystal structures of potentially homoaromatic molecules such as 
c«-l,4,7-cyclononatriene,Ua triquinacenellb and hexaquinacene.10d 

Bicyclo[2.1.0]pent-2-ene,llc~f barrelene,"8* and spireneslli~k provide 
additional examples of destabilizing interactions. 

According to Winstein3b and to Goldstein and Hoffmann,9 

stabilizing ir interactions should be observable in appropriately 
constituted anions as well as in cations. However, we have already 
demonstrated that the potentially homoaromatic cyclohexadienyl 
anion 5 does not show homoconjugative l,5-interaction.10c'e We 

© /£> /fe> e£& 
5 6a 6b 7 

(5) Olah, G. A.; Staral, J. S.; Liang, G. /. Am. Chem. Soc. 1974, 96, 6233. 
Olah, G. A.; Staral, J. S.; Spear, R. J.; Liang, G. Ibid. 1975, 97, 5489. 

(6) (a) Winstein, S.; Kaesz, H. D.; Kreiter, C. G.; Friedrich, E. C. J. Am. 
Chem. Soc. 1965, 87, 3267. (b) Warner, P.; Harris, D. L.; Bradley, C. H.; 
Winstein, S. Tetrahedron Lett. 1970, 4013. (c) Winstein, S.; Kreiter, C. G.; 
Brauman, J. I. J. Am. Chem. Soc. 1966, 88, 2047. (d) Oth, J. F. M.; Smith, 
D. M.; Prange, U.; Schroder, G. Angew. Chem., Int. Ed. Engl. 1973,12, 327. 
(e) Paquette, L. A.; Broadhurst, M. J.; Warner, P.; Olah, G. A.; Liang, G. 
J. Am. Chem. Soc. 1973, 95, 3386. 

(7) (a) Winstein, S.; Shatavsky, M.; Norton, C; Woodward, R. B. J. Am. 
Chem. Soc. 1955, 77, 4183. (b) Winstein, S.; Shatavsky, M. Ibid. 1956, 78, 
592. (c) Winstein, S.; Hansen, R. L. Tetrahedron Lett. 1960, 25, 4. (d) 
Gassman, P. G.; Patton, D. S. /. Am. Chem. Soc. 1969, 91, 2160. (e) 
Lustgarten, R. K.; Brookhart, M.; Winstein, S.; Gassman, P. G.; Patton, D. 
S.; Richey H. G., Jr.; Nichols, J. D. Tetrahedron Lett. 1970, 1699. 

(8) (a) Winstein, S.; Sonnenberg, J.; de Vries, L. J. Am. Chem. Soc. 1959, 
81, 6523. (b) Winstein, S.; Sonnenberg, J. Ibid. 1961, 83, 3235, 3244. (c) 
Winstein, S.; Friedrich, E. C; Baker, R.; Lin, Y. Tetrahedron, Suppl. 1966, 
8, Part 2, 621. (d) Masamune, S.; Sakai, M.; Kemp-Jones, A. V.; Nakashima, 
T. Can. J. Chem. 1974,52,855. (e) Coates, R. M.; Fretz, E. R. /. Am. Chem. 
Soc. 1975, 97, 2538. (0 Olah, G. A.; Surya Prakash, G. K.; Rawdah, T. N.; 
Whittaker, D.; Rees, J. C. Ibid. 1979, 101, 3935. 

(9) Goldstein, M. J.; Hoffmann, R. /. Am. Chem. Soc. 1971, 93, 6193. 
(10) (a) Kao, J.; Radom, L. J. Am. Chem. Soc. 1978,100, 760. (b) Houk, 

K. N.; Gandour, R. W.; Strozier, R. W.; Rondan, N. G.; Paquette, L. A. Ibid. 
1979,101, 6797. (c) Olah, G. A.; Asensio, G.; Mayr, H.; Schleyer, P. v. R. 
Ibid. 1978,100, 4347. (d) Christoph, G. G.; Muthard, J. L.; Paquette, L. A.; 
Bohm, M. C; Gleiter, R. Ibid. 1978, 100, 7782. (e) For further theoretical 
treatments of 5 see also: Burdon, J.; Parsons, I. W.; Avramides, E. J. /. Chem. 
Soc, Perkin Trans. 1 1979, 1268. Birch, A. J.; Hinde, A. L.; Radom, L. J. 
Am. Chem. Soc. 1980, 102, 6430 and ref 4e. (f) Gordon, M. D.; Fukunaga, 
T.; Simmons, H. E. Ibid. 1976, 98, 8401. 

(11) (a) Roth, W. R.; Bang, W. B.; Goebel, P.; Sass, R. L.; Turner, R. B.; 
Yu, A. P. J. Am. Chem. Soc. 1964, 86, 3178. (b) Stevens, E. D.; Kramer, 
J. D.; Paquette, L. A. J. Org. Chem. 1976, 41, 2266. (c) Jorgensen, W. L.; 
Borden, W. T. /. Am. Chem. Soc. 1973, 95, 6649. (d) Jorgensen, W. L. Ibid. 
1975,97, 3082. (e) Roth, W. R.; Klarner, F.-G.; Lennartz, H.-W. Chem. Ber. 
1980, 113, 1818. (f) Andrews, G. D.; Baldwin, J. E.; Gilbert, K. E. /. Org. 
Chem. 1980,45, 1523. (g) Haselbach, E.; Heilbronner, E.; Schroder, G. HeIv. 
Chim. Acta 1971, 54, 153. (h) Turner, R. B. /. Am. Chem. Soc. 1964, 86, 
3586. (i) Batich, C; Heilbronner, E.; Rommel, E.; Semmelhack, M. F.; Foos, 
J. S. Ibid. 1974, 96, 7662. (j) Bischof, P.; Gleiter, R.; Durr, H.; Ruge, B.; 
Herbst, P. Chem. Ber. 1976, 109, 1412. (k) Hill, R. K.; Morton, G. H.; 
Rogers, D. W.; Choi, L. S., to be submitted for publication. 

suggested that, in general, monohomoaromaticity should be less 
significant in anions than in cations. 

The bicyclo[3.2.1]octa-3,6-dien-2-yl anion (6), with 6 w elec
trons, is the most widely cited example of alleged anionic ho
moaromaticity; the experimental data seem to provide particularly 
convincing support of the predictions of qualitative ir-MO theory. 
We have examined the degree of ir interaction in 6 and related 
anions by means of quantitative semiempirical and ab initio MO 
calculations. The corresponding potentially antiaromatic 4ir 
cationic system, 7, and its relatives have also been included in our 
study. 

Experimental Data 

The 7r-delocalized intermediate 6b was first suggested by Brown and 
Occolowitz to account for the rapid base-catalyzed H/D exchange at C-4, 
1045 times faster in 8 than in 9.12 Similarly, rapid H-4 exchange was 
found for benzo[6,7]bicyclo[3.2.1]octa-2,6-diene13 and for bicyclo-
[3.2.2]nona-2,6-diene.14 The 2.3-ppm high-field shift of H-6 and H-7 
in the 1H NMR spectrum of 6 (relative to 8) was considered to be 
additional evidence for the homoaromatic delocalization of negative 
charge.15 

I 

8 9 

This latter interpretation was questioned by Trimitsis and Tuncay.16 

They demonstrated that the base-catalyzed H-4 exchange is only 3.3 
times faster in 10 than in 11, indicating the absence of homoconjugative 

ifyn ^S &f 
Ph H Ph H P h 

10 11 12 

stabilization in anion 12.16 On the other hand, H-6 and H-7 are 1.4 ppm 
more shielded in 12 than in 10, approximately half the effect observed 
for the "homoaromatic" anion 6. This suggested that effects other than 
homoconjugation might be responsible for the abnormal chemical shifts 
in 6. 

Data for the corresponding cation (7) also do not provide conclusive 
evidence for interaction between the two x systems. The solvolysis of the 
p-nitrobenzoate 14 was 235 times slower than that of 13." Diaz, Sakai, 

13 14 

and Winstein considered the magnitude of the rate reduction to be "in 
line with" the expected antiaromatic character of the dienyl cation 7. 
They pointed out, however, that the difference between the solvolysis 
rates might be due partially to the rate-retarding inductive effect of the 
second olefinic group in 14. 

Cyclodelocalization can be analyzed more directly in free radicals than 
in anions and cations; the coefficients of the singly occupied MO's can 
be derived from the proton coupling constants in the ESR spectrum.18 

(12) (a) Brown, J. M.; Occolowitz, J. L. Chem. Commun. 1965, 376. (b) 
Brown, J. M.; Occolowitz, J. L.; J. Chem. Soc. B 1968, 411. Brown, J. M.; 
Cain, E. N. /. Am. Chem. Soc. 1970, 92, 3821. 

(13) (a) Rosenthal, J. W.; Winstein, S. Tetrahedron Lett. 1970, 2683. (b) 
Brown, J. M.; Cain, E. N.; Mclvor, M. C. J. Chem. Soc. B 1971, 730. 

(14) (a) Moncur, M. V.; Grutzner, J. B. J. Am. Chem. Soc. 1973, 95, 
6449. (b) Goldstein, M. J.; Natowsky, S. Ibid. 1973, 95, 6451. 

(15) (a) Brown, J. M. Chem. Commun. 1967, 638. (b) Winstein, S.; 
Ogliaruso, M.; Sakai, M.; Nicholson, J. M. J. Am. Chem. Soc. 1967, 89, 3656. 

(16) (a) Trimitsis, G. B.; Tuncay, A. J. Am. Chem. Soc. 1975, 97, 7193; 
(b) 1976, 98, 1997. 

(17) Diaz, A. F.; Sakai, M.; Winstein, S. J. Am. Chem. Soc. 1970, 92, 
7477. 

(18) (a) Sustmann, R.; Gellert, R. W. Chem. Ber. 1978, / / / , 42. (b) 
Kawamura, T.; Takeichi, Y.; Hayashida, S.; Sakamoto, M.; Yonezawa, T. 
Bull. Chem. Soc. Jpn. 1978, 51, 3069. 
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Sustmann and Gellert compared the ESR spectra of 15 and 16 and found 

& » ^ > 
15 16 

that the allylic hyperfine coupling constants with protons H-2, H-3, and 
H-4 are not reduced by the extra double bond in 16.18a Furthermore, 
protons H-6 and H-7 showed only very small couplings in the ESR 
spectra of both 15 and 16, thus excluding significant delocalization in 16. 
This conclusion was corroborated by INDO calculations.183 In addition, 
Sustmann and Gellert reported that INDO calculations on anion 6 using 
the optimized geometry of radical 16 did not display homoconjugative 
interactions. To account for the experimentally observed stabilization 
of 6, the authors suggested a distortion of the bicyclic framework in the 
anion. 

Discussion 

Systems Examined. Our analysis is based on a comparison of 
the geometric, electronic, and energetic properties of the 6ir anion 
6 and the 4ir cation 7 with the partially saturated ions 17 and 18. 

Catlorn 17 19 2 2 

Anion* 18 21 2 4 

In addition, ions 19 and 21, derived from the triene 20, and ions 
22 and 24, formed from 23, were studied. The exocyclic double 
bonds are arranged in these systems so that orbital symmetry 
enforces a different interaction pattern than in 6 and 7 (Figure 
1). 

1̂2 of the allyl fragment is antisymmetric (Figure 1) and may 
interact with TT* in 6 and 7 or with the antisymmetric orbital, ir2, 
of the butadiene fragment in 19 and 21. \p2 cannot interact with 
the IT or ir* orbitals of the exocyclic double bond in 22 and 24 
(Figure 1, right side). Therefore, stabilization of anion 6 and of 
cation 19 but no stabilization of either cation 22 or anion 24 may 
be expected from symmetry considerations. 

Computational Details. M N D O " and ab initio20" (with the 
minimal ST0-3G basis set)21 procedures were used to evaluate 
the magnitude of these interactions. Complete geometry opti
mizations were carried out at the MNDO level; Cs symmetry 
constraints were employed for the ions.22 These MNDO geom
etries were then used for the ab initio calculations with one change: 
all C-H bond lengths were set at 1.09 A instead of the larger 
MNDO values. In addition, we performed MINDO/3 calcula
tions,23 also with complete geometry optimizations, and single-point 
ab initio calculations (STO-3G) using the MINDO/3 geometries. 
Since the results were almost identical (deviations of A£"s in eq 
1-6 were less than 1 kcal/mol), they will not be included in this 
paper. MINDO/3 has previously been demonstrated to reproduce 
geometries of potentially homoaromatic systems very well.4d,e'10c 

Therefore, we expected the semiempirical methods also to give 
reliable structures for the systems considered here. This as
sumption is supported by the agreement between the STO-3 G 
stabilization energies based on semiempirical structures and the 

(19) Dewar, M. J. S.; Thiel, W. / . Am. Chem. Soc. 1977, 99, 4899. 
(20) (a) Hehre, W. J.; Lathan, W. A.; Ditchfield, R.; Newton, M. D.; 

Pople, J. A., Gaussian 70, QCPE Program No. 236, Indiana University, 
Bloomington, Indiana, (b) Jorgensen, W. L. Ibid. Program No. 340, Indiana 
University, Bloomington, Indiana. 

(21) Hehre, W. J.; Stewart, R. F.; Pople, J. A. J. Chem. Phys. 1969, 51, 
2657. 

(22) Complete optimization of 6 without symmetry restrictions at the 
MINDO/3 level showed the energy minimum to correspond to C1 geometry: 
Grutzner, J. B.; Jorgensen, W. L., preceding paper in this issue. 

(23) Bingham, R. C; Dewar, M. J. S.; Lo, D. H. / . Am. Chem. Soc. 1975, 
97, 1285. 
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experimental stability order of 6 and 18 as well as of 7 and 17. 
Orbital drawings were carried out with Jorgensen's plotting 

program20b using the ST0-3G wave functions. 
Geometries. In homoaromatic ions like 1-4, geometrical dis

tortions take place which increase interaction between the termini 
of the T systems.4 Such distortions indicate the presence of 
homoconjugative interactions. 

However, the calculated MNDO geometries of the ions included 
in Table I do not provide any evidence for homoaromaticity. The 
allylic bond lengths (C-2-C-3) remain virtually unchanged (r = 
1.395 ± 0.001 A) in anions 6, 18, 21, and 24 in spite of the 
differing number and positions of additional double bonds. Sim
ilarly, almost identical allylic bond lengths are calculated for the 
various cations 7, 17, 19, and 22 (r = 1.406 ± 0.002 A). 

The presence of cyclic conjugation in 6 might be expected to 
lead to a reduction of C-2-C-7 distance relative to that in cation 
7. However, the C-2-C-7 distance is only 0.003 A shorter in the 
67T system 6 than in the 4ir system 7. Analogously the C-2-C-7 
distances in the other cations are only insignificantly different from 
those in the corresponding anions. Homoaromatic interaction is 
thus indicated to be unimportant in these ions. 

Wave Functions. If cyclic conjugation occurs in 6, the anti
symmetric allyl HOMO must be stabilized by admixture of the 
C-6-C-7 T* fragment. However, the appropriate p-orbital 
coefficients on C-6 and C-7 are negligible in the HOMO. A plot 
of the STO-3G wave function (Figure 2) shows this clearly. Slight 
interaction between the two systems in the ion may, however, be 
recognized in the LUMO which is primarily localized at C-6 and 
C-7. 

The nonbonding orbitals of ions 6, 17, and 18 are also shown 
in Figure 2. A comparison of the HOMO's of anions 6 and 18 
with the LUMO's of cations 7 and 17 is revealing: they are 
virtually identical. The antisymmetric allyl ir orbitals in these 
systems thus remain essentially unaffected by the presence or 
absence of additional double bonds. 

Charge Distribution and Bond Orders. The results of Mulliken 
population analyses with STO-3G wave functions are shown in 
Table II. The charges on the allylic carbons C-2 and C-3 in 6 
are not very different from those in the other anions 18, 21, and 
24. The charge reduction in 6 relative to 18 is only 0.026 electrons. 
Similar effects are also found for the cations 7, 17, 19, and 22, 
in which the allylic carbons bear nearly identical charges. 

The greater shielding of the protons on C-6 and C-7 in 6 
compared to those in 8 observed in the 1H NMR spectra15 is 
partially reflected by the calculated charge distribution. There 
is a net increase of 0.05 electrons on C-6 and C-7 in 6 relative 
to neutral 8. However, a similar charge redistribution is seen in 
ions 21 and 24 as well: carbons 6, 7, and 9 in 21 and carbons 
8 and 9 in 24 bear 0.05 and 0.03 more electrons, respectively, 
relative to their neutral counterparts. The charge polarization 
in these systems appears to be relatively insensitive to the orien
tation of the additional double bonds. Thus, the increased shielding 
of H-6 and H-7 in 6 does not necessarily imply the presence of 
cyclic delocalization. 

Comparisons of the calculated C-2-C-7 and C-2-C-8 overlap 
populations in the different ions do not indicate any special sta
bilizing interaction in 6. On the contrary, the values are all small 
and negative and indicate weak antibonding interaction in all cases. 
In particular, the C-2-C-7 overlap population in 6 is nearly the 
same as that in the corresponding cation 7 (-0.043 vs. —0.041). 

Energies. The energetic impact of the C-6-C-7 double bond 
in the ions 6 and 7 can be assessed by eq 1 and 2; the reaction 

^ b > * zt> — zh> • ^ £ > ST0"3a '"NDO' 
Anion 18 6 -4.2 (+0,6) (1) 

B 9 
C«tlon 17 7 »2.9 (»1.0) (2) 

enthalpies are obtained from the data in Table III. Whereas 
MNDO predicts eq 1 and 2 to be almost thermoneutral, the ab 
initio calculations indicate a stabilization (4 kcal/mol) of anion 
6 relative to its saturated counterpart in agreement with the 
experimental data. Furthermore, the experimentally observed 
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VA 

h- IT 

6,7 19,21 22,24 

Figure 1. Symmetry-allowed interactions of the allylic ir2 orbital with ethylene fragments in different orientations. 

Table I. MNDO Geometries of Hydrocarbons and Ions (Distances in A) 

C-l-C-2 C-2-C-3 C-5-C-6 C-l-C-8 
X species (C-4-C-5) (C-3-C-4) (C-l-C-7) C-6-C-7 (C-5-C-8) C=CH2 

C-2-C-7 C-2-C-8 
(C-4-C-6) (C-4-C-8) 

+ 
H 

+ 
H 

+ 
H 

+ 
H 

17 
9 

18 

7 
8 
6 

19 
20 

21 

22 
23 

24 

1.511 
1.519 
1.556 
1.502 

1.513 
1.520 
1.558 

1.513 
1.524 
1.561 
1.500 

1.512 
1.518 
1.559 
1.502 

1.406 
1.351 
1.514 
1.394 

1.407 
1.351 
1.517 

1.404 
1.353 
1.507 
1.394 

1.405 
1.351 
1.512 
1.394 

1.573 
1.560 
1.561 
1.567 

1.542 
1.531 
1.533 

1.543 
1.535 
1.533 
1.545 

1.573 
1.560 
1.562 
1.567 

1.549 
1.551 

1.551 

1.352 
1.354 

1.487 
1.495 

1.497 

1.548 
1.550 

1.552 

1.563 
1.557 
1.557 
1.562 

1.573 
1.567 
1.565 

1.565 
1.560 
1.558 
1.563 

1.533 
1.531 
1.529 
1.537 

1.347 
1.344 
1.342 
1.344 

1.340 
1.337 

1.337 

2.543 
2.529 
2.593 
2.547 

2.483 
2.484 
2.543 

2.470 
2.492 
2.551 
2.503 

2.549 
2.542 
2.609 
2.552 

2.488 
2.481 
2.538 
2.484 

2.489 
2.486 
2.540 

2.497 
2.498 
2.547 
2.489 

2.439 
2.438 
2.498 
2.449 

Table IL Charges on Carbon and Overlap Populations (STO-3G) in Hydrocarbons and Ions 

X species C-I (C-5) C-2 (C-4) C-3 C-6 (C-7) C-8 C-9 
p(2-7) 
p(4-6) 

p(2-8) 
p(4-8) 

+ 
H 

-

+ 
H 

-

+ 
H 

— 

+ 
H 

-

17 
9 

18 

7 
8 

6 

19 
20 

21 

22 
23 

24 

-0 .052 
-0.037 
-0.026 
-0.024 

-0.055 
-0.044 
-0 .032 
-0.032 

-0.056 
-0.045 
-0.034 
-0.034 

-0.059 
-0.048 
-0.037 
-0.036 

+0.134 
-0.068 
-0 .112 
-0.255 

+0.137 
-0.065 
-0 .111 
-0 .242 

+0.133 
-0.065 
-0.111 
-0.247 

+0.134 
-0.064 
-0.110 
-0.251 

-0 .099 
-0.065 

-0.065 

-0.098 
-0.064 

-0.068 

-0 .100 
-0 .063 

-0 .061 

-0.098 
-0.064 

-0.060 

-0 .100 
-0.107 
-0 .103 
-0.104 

-0.044 
-0.070 
-0 .063 
-0 .093 

-0 .004 
+0.004 
+0.008 
+0.019 

-0.098 
-0.106 
-0.102 
-0.104 

-0.091 
-0.103 

-0.105 

-0.078 
-0.094 

-0.099 

-0.087 
-0.102 

-0.105 

+0.012 
+0.020 

+0.037 

-0.094 
-0.136 
-0.137 
-0.174 

-0.104 
-0 .153 

-0.199 

-0 .033 
-0.047 
-0 .041 
-0.057 

-0 .041 
-0.048 
-0.044 
-0.043 

-0.035 
-0.047 
-0.044 
-0.051 

-0.034 
-0.045 
-0.039 
-0.056 

-0.049 
-0 .050 
-0.044 
-0.050 

-0.049 
-0.050 
-0.045 
-0.053 

-0.049 
-0.048 
-0.043 
-0.050 

-0.055 
-0.052 
-0.048 
-0.050 
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Figure 2. Frontier orbitals (ST0-3G) of some bicyclic anions and cations. 

HOMO 18 

Table III. Calculated Heats of Formation (kcal/mol) and Total 
Energies (au) of Hydrocarbons and Ions Derived from 
Bicyclo[ 3.2.1] octane 

species 

17 
9 

18 
7 
8 
6 

19 
20 
21 
22 
23 
24 

AHf0 (MNDO) 

202.4 
0.2 
7.7 

236.8 
33.6 
41.7 

243.6 
44.2 
49.4 

222.0 
21.9 
27.7 

Etot (STO-3G) 

-305.46172 
-306.260 70 
-305.445 42 
-304.225 57 
-305.02916 
-304.220 64 
-380.18377 
-380.98186 
-380.179 30 
-342.817 40 
-343.616 29 
-342.808 67 

destabilization of cation 7 by the C-6-C-7 double bond is also 
reproduced by the STO-3G calculations. We thus regard the 
STO-3G energies to be more reliable. 

How can the stabilization of 6 and the destabilization of 7 be 
explained, even though we do not find any evidence for w inter
actions? Homoconjugative interactions may be present in 6 and 
7 but are too small to be seen in the wave functions. Alternatively, 
the stabilization of 6 and the destabilization of 7 may be due to 
the inductive effect of the additional double bonds. The reaction 
enthalpies of eq 3-6 may be used to differentiate these two 

£*.)&—£>-}&> 
Anion 

Cation 

18 
17 

20 

b̂> *£0 
Anion 

Cation 

18 
17 

23 

21 
19 

h 
24 
22 

STO-3Q (MNDO) 

-8X) (-2.3) 

-0.6 (-2,B) 

ST0-3G (MNDO) 

-4.8 (-1.7) 

0.0 (-2.1) 

(3) 

(4) 

(5) 

(6) 

possibilities. In anions 21 and 24, the additional double bonds 
are orientated so that H O M O - L U M O interactions with the allylic 
fragment are symmetry inhibited. Nevertheless, the stabilization 
of 24 is similar in magnitude to that of 6 (eq 5); 21, with two exo 
double bonds, is stabilized to an even greater extent than 6 (eq 
3). This demonstrates the operation of an inductive effect. Unlike 
7, cations 19 and 22 are not affected significantly by the extra 
double bonds (eq 2, 4, and 6). Homoconjugative interactions of 
small magnitude, destabilizing 7 and stabilizing 19 (see Figure 
1), may be involved. C - C hyperconjugation, different for sp3-
and sp2-hybridized carbons, may also contribute to the differences 

found. We prefer to defer detailed analysis of possible effects in 
alleged homoaromatic cations to the next paper in this series where 
systems better constituted for favorable interactions of •K fragments 
will be considered. 

Conclusions 

Since the bicyclo[3.2.1]octa-3,6-dien-2-yl anion (6) is clearly 
not a bishomoaromatic system, the same may well be true for other 
bicyclic anions which have similar structures as 6. Anions 25,14a 

27 

26,13 27,24 and 28,25 for example, probably do not have the sug
gested delocalized structures. The 1Ox electron system 29, which 
has been demonstrated experimentally not to be a bishomo
aromatic species,26 is another example in this series. 

In parallel work, Grutzner and Jorgensen concluded that the 
experimentally observed stability of anion 30 is not due to long-

29 30 31 

icyclic stabilization.22 The failure to observe longicyclic stabi
lization of 31 2 7 experimentally is thus not an exception but is 
representative of the general rule that bicyclohomoaromaticity 
is not observable in anionic systems. 

Qualitative M O theory that does not consider the magnitude 
of the overlap is obviously not sufficient for predicting stabilizations 
through interactions of x fragments. It is likely that most of the 
systems that were thought to display aromatic stabilization on 
the basis of the symmetry properties of the fragment orbitals and 
the topology of their interactions' do not do so because both the 
geometrical separation and the energy difference between the 
interacting ribbon orbitals are too large. In combination with 

(24) Anastassiou, A. G.; Kasmai, H. J. Chem. Soc, Chem. Commun. 
1975,201. 

(25) Trimitsis, G. B.; Crowe, E. W.; Slomp, G.; Helle, T. L. J. Am. Chem. 
Soc. 1973, 95, 4333. 

(26) Paquette, L. A.; Kukla, M. J.; Ley, S. V.; Traynor, S. G. J. Am. 
Chem. Soc. 1977, 99, 4756. 

(27) Goldstein, M. J.; Nomura, Y.; Takeuchi, Y.; Tomoda, S. / . Am. 
Chem. Soc. 1978, 100, 4899. 
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previous conclusions that homoaromaticity does not exist in neutral 
molecules10b and that monohomoaromaticity is not an important 
effect in anions,1* this work suggests that homoaromaticity may 
be restricted to cationic systems which can distort to increase the 
overlap of the interacting orbitals. 
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Abstract: Multinuclear NMR (1H, 13C, and 23Na) is applied to complex formation between Na+ and a series of linear polyethers. 
The most interesting finding is the considerable difference in complexation enthalpies and entropies: while AH = -18 ± 3 
kJ-mol"1 and AS = -11 ± 3 J-K'^mol"' for the sodium complex of l,20-bis(o-(methylamido)phenoxy)-3,6,9,12,15,18-hexa-
oxaeicosane (2-Na), the homologous ligand l,ll-bis(o-(methylamido)phenoxy)-3,6,9-trioxaundecane (1-Na) has AH = -66 
± 10 kJ-mol"' and AS = -185 ± 45 J-K'^mol"1. This difference reflects pyridine solvent participation in 1-Na (but not in 
2-Na) complex formation. When the weaker electron-donor solvent acetonitrile is used, solvent coordination to the cation 
is no longer significant for the 1-Na complex. 

Introduction 
The preparation by Pedersen2 of cyclic polyethers which form 

strong complexes with metallic ions has ushered in a new era in 
chemistry. Crown ethers3 and cryptands4 are how routinely used 
in many industrial and chemical processes, for enhancing the 
solubility of salts in organic solvents and also for their cation-
binding selectivity.5 Crown ethers are synthetic analogues of 
natural macrocycles such as those present in many antibiotic 
ionophores, which are known for their efficiency and selectivity 
in binding ions. Examples of acyclic ionophore antibiotics include 
monensin, nigericin, grisorixin, X-537 A (lasalocid), alborixin, 
and emericid.6 These biomolecules wrap themselves around the 
cation, in a manner very similar to the cyclic species.6 Acyclic 
synthetic analogues should behave likewise and thus should be 
useful additions to the available crown ethers and cryptands. 
Furthermore, acyclic oligoethers, called podands,5,6 are obtained 
simply and cheaply; there is no need for high-dilution techniques 
or for template effects in their preparation.8 Vogtle's group has 
synthesized numerous such open-chain ligands.6 

We have already shown the potential utility of 23Na nuclear 
magnetic resonance for studying cation binding by organic and 
biological ionophores.9 In a preliminary communication the 
complexing properties of ligand 1 toward the Na+ cation were 
described.10 We report here results obtained also with the podands 
listed in Chart I. 

We have selected these ligands, from a row of polyethers 
synthesized in the laboratory of Professor Vogtle in Bonn, because 

(1) (a) Institut de Chimie Organique et de Biochimie, UniversitS de Liege, 
Sart-Tilman par 4000 LiSge, Belgium, (b) Department of Chemistry, Florida 
State University, Tallahassee, Florida 32306. 

(2) Pedersen, C. J. / . Am. Chem. Soc. 1967, 89, 7017-7036. 
(3) Christensen, J. J.; Eatough, D. J.; Izatt, R. M. Chem. Rev. 1974, 74, 

351-384. 
(4) Lehn, J. M. Struct. Bonding (Berlin) 1973,16, 1-69. Ace. Chem. Res. 

1978, / / , 49-57. Pure Appl. Chem. 1978, 50, 871-892. 
(5) Schwind, R. A.; Gilligan, T. J.; Cussier, E. L. In "Synthetic Multi-

dentate Macrocyclic Compounds"; Izatt, R. M. Christensen, J. J., Eds.; Ac
ademic Press: New York, 1978; pp 289-308. 

(6) Vogtle, F.; Weber, E. Angew. Chem., Int. Ed. Engl. 1979,18, 753-776. 
(7) Vogtle, F. Chem.-Ztg. 1971, 96, 396-403. 
(8) De Sousa Healy, M.; Rest, A. J. Adv. Inorg. Chem. Radiochem. 1978, 

21, 1-40. 
(9) Laszlo, P. Angew. Chem., Int. Ed. Engl. 1978, 17, 254-266. Nachr. 

Chem., Tech. Lab. 1979, 27, 710-712. Bull. Magn. Reson. in press. 
(10) Grandjean, J.; Laszlo, P.; Vogtle, F.; Sieger, H. Angew. Chem. 1978, 

90, 902-903. Angew. Chem., Int. Ed. Engl. 1978, 17, 856-857. 

Chart I 

' f * > 0 ^ 

l , n = l , R =-NHCOCH3 

2, n = 3, R = -NHCOCH3 

3,n = 1,R = -CONHCH3 

4, n = 1, R = -NH— co—v \ 

1, l,ll-bis(o-(methylarnido)phenoxy)-3,6,9-trioxaundecane;2, 
l,20-bis(o-(methylamido)phenoxy>3,6,9,12,15,18-
hexaoxaeicosane; 3, l,ll-bis(o(methylamido)phenoxy)-3,6,9-
trioxaundecane; 4, l,ll-bis[o-((o-nitrophenyl)amido)phenoxy]-
3,6,9-trioxaundecane;S, l,ll-bis[o-[[o-(10-(o-nitrophenyl> 
1,4,7,10-tetraoxadecyl)pheny I] amido] phenoxy ] -3,6,9-
trioxaundecane;6, l,3,5-tris[[o-(9-(8-quinolyloxy)-l,4,7-
trioxanonyl)phenyl]amido]benzene; 7, pyridinophane cryptand 
((2.2.I)PV)'3 

they include pentaethers (compounds 1, 3, and 4), having also 
two nitrogen heteroatoms available for coordination to the cation. 
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